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LETTER TO THE EDITOR

A tree-based scaling exponent for random cluster models

David Aldous and Bret Larget _
Department of Statistics, University of California, Berkeley, CA 94720, USA

Received 6 April 1992, in final form 23 June 1992

Abstract. For models of random trees in the hypercubic lattice, or more general random
clusters to which tree siructurc may be added, we introduce a novel scaling exponent.

its value is estimated by Monte Carlo simulation.

There has been much study of models of random connected clusters of sites in the
hypercubic lattice, both dynamic growth models such as diffusion-fimited aggregation
[19,10,17] and combinatorial medels such as lattice trees and animals [9,11-13]},
other polymer models [15], and self-avoiding walks [5]. Typical questions asked of
such models are:

(i) fractal dimension I, of the cluster in low dimensions d;

(ii) critical dimension d, above which the predictions of the mean-ficld theory are

We introduce a new methodology which focuses more on the way a cluster is con-
nected than on its shape. (As observed by a referee, different notions of connectivity
have been studied [18,6-8,16] in the context of percolation problems.) Our method-
ology is directly applicable to models of trees, and may be indirectly applied to more
general cluster models by incorporating tree structure. Thus in a growth model, when
the nth particle p,, is attached it is the neighbour of one or more existing particles,
and we may include in the model description a way to choose one of those neighbours
p (uniformly, if a more natural method is not available) and add an edge (p,p,) to
the existing tree. We regard trees as rooted at the origin. Now the intrinsic structure
of an n-vertex tree may be represented by a walk of length 2n with +1 steps and with
first return to 0 at step 2n. Order the children of each vertex v as first, second, third,
etc (in a dynamic growth model, use order of attachment; in a combinatorial model,
order randomly). Consider deptii-first search of the tree, moving from a current vertex
v 1o the first child not previously visited, if one exists, and otherwise time 2n — 1.
Define the associated walk 1 = w(1), w(2),...,w(2n — 1) = 1 to take a +1 step
when the search moves from parent to child and a —1 step when the search moves
from child to parent (by convention w(0) = w(2Zn) = 0); see figure 1. Note that
the value of w when the search is at vertex v is 1 plus the within-tree distance (i.e.
length of unique path in the tree) from v to the origin.

This transformation from tree to walk captures the intrinsic graph-theoretic struc-
ture of the tree, but not the way the tree was embedded into the lattice, which is the
major disadvantage of the method. Its advantage is that it enables us to transform
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Figure 1. A small abstract tree and its associated walk.

study of a random cluster to study of a random walk (in general, with some compli-
cated probability distribution). This is an advantage because studying convergence of
rescaled discrete random walks to continuous random functions is simpler (as math-
ematical theory, and in seeking to observe such convergence in simulations) than
directly studying convergence of rescaled random subsets of the lattice to random
subsets of the continuum. More specifically, it enables one to compare simulation
behaviour of random clusters or trees in the lattice with the rigorous limit theory
[2,3] for abstract (i.e. non-lattice) random trees. For natural combinatorial models of
random n-vertex abstract trees (e.g. unordered labelled, ordered or ordered binary)
it is known that

n~2w(2nt) S 2a W (1) a8 n— oo ¢Y)

where — is convergence in distribution [4] and where W is Brownian excursion, ie.
one-dimensional Brownian motion conditioned on W(0) = W(1) =0, W(¢) > 0
for 0 < t < 1. Thus we rescale each 1 step to a +n~/2 step and rescale the
discrete time interval [0,2n] to the interval [0,1]. In (1) a is a scale parameter
depending on the exact model. For models of random lattice clusters for which there
is a natural way to incorporate tree structure, one may ask whether there is a critical
dimension d; such that (1) is true for d > d, but not for d < d;, and study this
question by Monte Carlo simulation. The intuitive interpretation of the existence of
such a critical dimension d, is that the geometry of d-dimensional space has a major
influence on cluster behaviour for d < d;, but not for d > d,. More generally one
may ask whether in a fixed dimension the model admits a limit

n”%w(2nt) 4 W*(1) as n— o0 (2)

for some limit process W*. When (2) holds, « is our novel scaling exponent. Such a
result would be an elaboration of the idea that the mean within-tree distance between
vertices of an n-site cluster grows as order n*. Note that for trees grown in a regular
deterministic manner (cf figure 2) the walks typically oscillate increasingly rapidly as
n — oo and therefore can have no limit process (2).

In this letter we study one model, the uniform random spanning tree. Consider
the discrete torus Z& with n = N¢ vertices, i.e. the hypercube of side-length N
continued periodically. This graph has a finite set of spanning trees, so it makes sense
to talk of a uniform random spanning tree, and there is an efficient algorithm (see
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Figure 2. A spanning tree in two dimensions where every vertex is the minimum possible
distance from the root and its associated walk.
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walk. The broken lines indicate edges which connect two vertices on opposite sides.

¢.g. [1]) for Monte Carlo simulation of spanning trees in any finite graph. Figure 3 is
a realization of a spanning tree (¢ = 2, N = 20) and its associated walk. There are
theoretical reasons to believe that for large d the Brownian excursion approximation
(1) holds, and hence o = 1. But (1) is implausible for d = 2 because it would imply
that the mean within-trec distance from a vertex to the origin is order n!/? = N,
the same order as the minimum possible distance.

This problem can be studied analytically with d = 1. In this case, (2) holds with
a = 1and W*(t) defined as follows. Choose u uniformly from the unit interval. Let
W*0) = W*(u) = W*(1) =0. Let W*(u/2) =uwand W*((v+1)/2)=1-u.
Then W*(t) is the piecewise-linear function connecting these five points.

We studied simulations with ¥ = 40, 80 and 160 (d = 2) and with N = 20, 30
and 40 (d = 3), using 2000 repetitions at each size.

Let @, = (2N441)72 zi‘:; w(k) be the mean height (within-tree distance from
root plus 1) over all steps in the associated walk. Then (2) predicts @y ~ ayz N9,
Plotting log i, against log NV gives the estimates

ax0.628 (d=2) ax0.544 (d=3). (3)
To elaborate this analysis, let @, () be the mean of w(2nt). Then (2) predicts

(1) & Nap_ (1) @)
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where @, (t) = EW*(t). Figures 4 and 5 show the curves N4, (1) with «
given by (3). The curves stay very close for varying N, consistent with (4). For
Brownian excursion it is known that EW(t) = ¢\/#(1 ~ t). For a uniform random
spanning tree with d = 1, EW™(t) = 2¢(1-1). It is not hard to argue that, given (2),
the limit should scale like @ (¢} =~ t* as t | 0. So one might guess

W (1) & g N4 [t(1 — 1))*

and indeed the curves in figures 4 and 5 are a good fit to c,[t(1 —t)]".
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. Mean scaled distance from root (d = 2) for N = 40, 80 and 160.
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Figure 5. Mean scaled distance from root (d = 3) for N = 20, 30 and 40.

From the numbers in (3) one guesses that in d = 4, o is either exactly } or very
close to 7, and it seems impractical to distinguish these possibilities by simulation.
Let us remark that for a different aspect of this model (is the N — co limit a forest of
disjoint trees or a single tree?) it is rigorously known [14] that the critical dimension
is 5. In view of the connection [2,14] between random walk and spanning trees it
would be interesting to know whether the scaling exponents (3) relate to any scaling
exponents previously studied for a d-dimensional random walk. Finally, we record
a puzzling observation from the simulations. Table 1 shows for d = 3 the Monte



Letter to the Editor L1069

Table 1. Monte Carlo estimates of the frequency p(z) of vertices with out<legree i for
d = 3, compared with the predictions of equation (5).

Out-degree 0 1 2 3 4 5

Monte Carlo 03275  0.4099 02048 00510 0.0064  0.0003
Equation (5) 03279 04094 02047 0.0512 0.0064  0.0004

Carlo estimates of the frequency p(i) of vertices with out-degree i. The data is a
remarkable fit to the unique mean-1 distribution such that

p(i) =p(i-1)/2" ix2 ()

although we have no theoretical explanation for (5).

In conclusion,- the- particular- model studied. here was.chosen_for mathematical
simplicity rather than physical relevance. A possible use of this methodology more
relevant to physicists would be to consider cases where two different random cluster
models appear in simulations to have similar fractal growth exponents according to the
usual ways of estimating fractal dimension, and study whether the tree-based scaling
exponents are similar. This seems a potentially powerful method for supporting or
rejecting the belief that the different models Jead to similar observed behaviour.

David Aldous’ research was supported by NSF grant DMS90-01710.
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