
A tree-based scaling exponent for random cluster models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 L1065

(http://iopscience.iop.org/0305-4470/25/17/009)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 16:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 25 (1992) L1065-LlO69. Printed in the UK 

LEITER TO THE EDITOR 

A tree-based scaling exponent for random cluster models 

David Aldous and Bret Larget 
Department of Statistics, University of California, Berkeley, CA 94720, USA 

Received 6 April 1992 in final form 23 June 1992 

AbslrscL For models of random trees in lhe hypercubic lattice, or more general random 
clusters to which tree structure may k added, we intmduce a novel raling a p n e n t .  
For the particular model of uniform random spa%ngt&es in twoaid  three dimensions, 
ill  value is estimated by Monte Carlo simulation. 

There has been much study of models of random connected clusters of sites in the 
hypercubic lattice, both dynamic growth models such as diffusion-limited aggregation 
[19,10,17] and combinatorial models such as lattice trees and animals [9,11-13], 
other polymer models [U], and self-avoiding walks [SI. ppical questions asked of 
such models are: 

(i) fractal dimension D,  of the cluster in low dimensions d; 
(ii) critical dimension do above which the predictions of the mean-field theory are 

We introduce a new methodology which focuses more on the way a cluster is con- 
nected than on its shape. (As observed by a referee, different notions of connectivity 
have been studied [18,6-8,16] in the context of percolation problems.) Our method- 
ology is directly applicable to models of trees, and may be indirectly applied to more 
general cluster models by incorporating tree structure. Thus in a growth model, when 
the nth particle p ,  is attached it is the neighbour of one or more existing particles, 
and we may include in the model description a way to choose one of those neighbours 
p (uniformly, if a more natural method is not available) and add an edge ( p , p , )  to 
the existing tree. We regard trees as rooted at the origin. Now the intrinsic structure 
of an n-vertex tree may be represented by a walk of length 2n with &1 steps and with 
first return to 0 at step 2n. Order the children of each vertex U as first, second, third, 
etc (in a dynamic growth model, use order of attachment; in a combinatorial model, 
order randomly). Consider depth-first search of the tree, moving from a current vertex 
'U to the first child not previously visited, if one exists, and otherwise time 2n - 1. 
Define the associated walk 1 = w ( l ) , w ( 2 ) , .  . . ,4271 - 1) = 1 to take a +1 step 
when the search moves from parent to child and a -1 step when the search moves 
from child to parent (by convention w ( 0 )  = w(2n) = 0); see figure 1. Note that 
the value of w when the search is at vertex 3 is 1 plus the within-tree distance (i.e. 
length of unique path in the tree) from 3 to the origin. 

This transformation from tree to walk captures the intrinsic graph-theoretic struc- 
ture of the tree, but not the way the tree was embedded into the lattice, which is the 
major disadvantage of the method Its advantage is that it enables us to transform 
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Figure 1. A small abstract tree and its associated walk. 

study of a random cluster to study of a random walk (in general, with some compli- 
cated probdbiiity distributionj. Tiiis is an advantage because studying convergence oi 
rescaled discrete random walks to continuous random functions is simpler (as math- 
ematical theory, and in seeking to obselve such convergence in simulations) than 
directly studying convergence of rescaled random subsets of the lattice to random 
subsets of the continuum. More specifically, it enables one to compare simulation 
behaviour of random clusters or trees in the lattice with the rigorous limit theory 
[2,3] for abstract (i.e. non-lattice) random trees. For natural combinatorial models of 
random n-vertex abstract trees (e.g. unordered labelled, ordered or ordered binary) 
it is known that 

n-"2W(2nt) 5 2QW(t) as n -+ CO (1) 

. .  .. r h a - n  :I ,.n-..a*ma--a A A:~+&h. .+A- rA1 0 - A  ..Lam 1x7 :c P m . . - h n  P W C . . - . ~ ~  n'lrlr i Y w " . " p ' L c c  U, " Y L L L " U L L U l l  1-1 PL." n,.r,* w Y I U W I I I ' U I  *nr".m".., :.e. 
one-dimensional Brownian motion conditioned on W(0) = W(l) = 0, W(t) > 0 
for 0 < t < 1. Thus we rescale each f l  step to a +n-'I2 step and rescale the 
discrete time interval [0,2n] to the interval [0,1]. In (1) a is a scale parameter 
depending on the exact model. For models of random lattice clusters for which there 
6 a natural way to incorporate tree structure, one may ask whether there is a critical 
dimension do such that (1) is true for d 2 do but not for d < do, and study this 
question by Monte Carlo simulation. The intuitive interpretation of the existence of 
such a critical dimension do is that the geometry of d-dimensional space has a major 
influence on cluster behaviour for d < do but not for d 2 do. More generally one 
may ask whether in a k e d  dimension the model admits a limit 

r. 

n-"w(Zntl f ~ c t l  as n -+ cs (2! 

for some limit process W'. When (2) holds, 01 is our novel scaling exponent. Such a 
result would be an elaboration of the idea that the mean within-tree distance between 
vertices of an n-site cluster grows as order n". Note that for trees grown in a regular 
deterministic manner (cf figure 2) the walks typically oscillate increasingly rapidly as 
n -+ 00 and therefore can have no limit process (2). 

In this letter we study one model, the uniform random spanning tree. Consider 
the discrete torus Z$ with n = N d  vertices, i.e. the hypercube of side-length N 
continued periodically. This graph has a finite set of spanning trees, so it makes sense 
to talk of a uniform random spanning tree, and there is an efficient algorithm (see 
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Fylre  2. A spanning tree in WO dimensions where every v e n a  is the minimum pmsible 
distance from the mot and ils associated walk. 
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e.g. [l]) for Monte Carlo simulation of spanning trees in any finite graph. Figure 3 is 
a realization of a spanning tree (d  = 2, N = 20) and its associated walk. There are 
theoretical reasons to believe that for large d the Brownian excursion approximation 
(1) holds, and hence Q = :. But (1) is implausible for d = 2 because it would imply 
that the mean within-tree distance from a vertex to the origin is order n'/' = N, 
the same order as the minimum possible distance. 

This problem can be studied analytically with d = 1. In this case, (2) holds with 
a = 1 and W*(t)  defined as follows. Choose U uniformly from the unit intelval. Let 
W ( 0 )  = W * ( U )  = W'(1) = 0. Let W*(u/2)  = U and W ( ( u +  1)/2) = 1 -U. 
Then W * ( t )  is the piecewise-linear function connecting these five points. 

we studied simuiations with N = 43, 80 and i60 jd = 2j and with M = 20, 30 
and 40 (d = 3), using 2000 repetitions at each size. 

Let tijN = (2Nd+l)-' w ( k )  be the mean height (within-treedistance from 
root plus 1) over all steps in the associated walk. Then (2) predicts tijN - a d N d a .  
Plotting log C N  against log N gives the estimates 

walk. ?he broken lines indicate edges which connect fwa vertices on opposite sidm. 

._. 

01 z 0.628 ( d  = 2) a s 0.544 ( d  = 3 ) .  (3) 

tijN(t) s Nd" w,(t )  - 

?b elaborate this analysis, let m N ( t )  he the mean of w(2nt). Then (2) predicts 

(4) 
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where c,(t) = EW'(1). Figures 4 and 5 show the curves N - d " c N ( t )  with a 
given by (3). The curves stay very close for varyin N, consistent with (4). For 
Brownian excursion it is known that E W ( 1 )  = CA. For a uniform random 
spanning tree with d = 1, EW'(1) = 21(1-1).  It is not hard to argue that, given (2), 
the limit should scale l i e  " ( 1 )  z t" as 1 10. So one might guess 

tijN(t) % q N d o  [ t ( l  - t)]" 

and indeed the curves in figures 4 and 5 are a good fit to cd[ t (  1 - t ) ] " .  
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Figure 4. Mean scaled distance from mot ( d  = 2) for N = 40, 80 and 160. 
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Pigum 5. Mean scaled distance from roo1 ( d  = 3) for N = 20, 30 and 40. 

From the numbers in (3) one guesses that in d = 4, a is either exactly or very 
close to i, and it seems impractical to distinguish these possibilities by simulation. 
Let us remark that for a different aspect of this model (is the N -+ 00 limit a forest of 
disjoint trees or a single tree?) it is rigorously known [14] that the critical dimension 
is 5. In view of the connection [2,14] between random walk and spanning trees it 
would be interesting to know whether the scaling exponena (3) relate to any scaling 
exponents previously studied for a d-dimensional random walk. Finally, we record 
a puzzling observation from the simulations. 'Bble 1 shows for d = 3 the Monte 
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lhblc 1. Monte Carlo eslimales of the i q u e n c y  p ( i )  of vertices wilh outdegree i for 
d = 3, compared with Ihe prediclions of equation (5). 

Outdegree 0 1 2 3 4 5 
~ 

Monte Carlo 0.3275 0.4099 0.2049 0,0510 0.0064 O.WO3 
Equation (5) 0.3279 0.4094 0.2047 0.0512 0.0064 o.wo4 

Carlo estimates of the frequency p( i) of vertices with out-degree i. The data is a 
remarkable fit to the unique mean-1 distribution such that 

p(i) = p(i - l)/P i > 2  

although we have no theoretical explanation for (5). 
In conclusion,. the. particular. model studied. here was. chosen .for mathematical 

simplicity rather than physical relevance. A possible use of this methodology more 
relevant to physicists would be to consider cases where two different random cluster 
models appear in simulations to have similar fractal growth exponents according to the 
usual ways of estimating fractal dimension, and study whether the tree-based scaling 
exponents are similar. This seems a potentially powerful method for supporting or 
rejecting the belief that the different models lead to similar observed behaviour. 

David Aldous' research was supported by NSF grant DMS90-01710. 
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